Effect Of Some Vegetables And Fruits To Get Rid Of Toxic Heavy Metals In Rat’s

Hamida Ahmed Helal-Nehadrashad El-Tahan -Mai Abd El-Khalikatwaand Fatma El Sayedabd El Rasheed
Department of Nutrition and Food Science, Faculty of Home Economics, Menoufia University

Abstract
The main target of the present investigation was to study the effect of some vegetables and fruits to get rid of toxic heavy metals (Lead and Mercury) in albino rats. Fifty four healthy adult male albino rats "Sprague Dawley strain" were used and divided into 9 equal groups, one was kept as a negative control group, while the second Group (5 rats) fed on basal diet with lead 0.2% (control positive group) and third group (5 rats) was fed on diet with mercury 0.02% (control positive group), while group (4) was fed on diet with lead + Ficussycomorus, group (5) was fed on diet with (Mercury Ficussycomorus), group (6) was fed on diet with lead + Malvasylvestris, group (7) was fed on diet with (Mercury + Malvasylvestris), group (8) was fed on diet with (lead + Coriander sativum) and group (9) was fed on diet with (Mercury + Coriander sativum). The results indicated that rats infected lead, mercury which fed on diet with Coriander, Malvasylvestris and Ficussycomorus caused a significant increase in body weight gain, feed intake and feed efficiency liver functions and kidney functions. Treating rats which were fed on diet with Coriander, Malvasylvestris and Ficussycomorus showed an improvement in all tested parameters. The histopathological examination confirmed the improvements in biological parameters and cell structure.

Key Words: Rats, Heavy metals, some vegetables and fruits and Biochemical analysis
1. Introduction

Human activity in the last few decades has led to global contamination by organic and inorganic compounds (Sahue et al., 2007) and (Chaerunet et al., 2011). The presence of the pollutants generated from industrial and agriculture activities in the waterways has been identified to produce potential harmful effect on the aquatic living organisms and the food webs (Oliveira et al., 2004) and (Katnoriaet al., 2011). Nowadays, heavy metals contamination are considered to be among the most serious environmental problems. Heavy metals are any inorganic metallic compounds that can exert their toxicity via binding to the thiol group and disulfide bond that contribute to the stability of the enzyme (Frasco et al., 2005). The metals have high affinity to the disulfide bridge between two cysteine residues in any protein compound. Heavy metals are very dangerous to living organisms especially for humans since they can cause DNA damage and exert carcinogenic effects. Medicinal plants play important role in individuals and communities health. The medicinal value of these plants depends on some chemical compounds that produce a definite physiological action in the human body. The most important of these bioactive constituents of plants are alkaloids, tannins, flavonoids and phenolic compounds (Hill, 1952). The state of medicinal plants research has been emphasized in many developing countries (Edeoga et al., 2005). The appropriate utilization of local resources to cover drugs needs is dependent on the preliminary scientific study to determine the efficacy and safety of any preparation (Burkill, 1984). The awareness of the role of medicinal plants in health care delivery of developing countries has resulted in researches into traditional medicine with a view to integrating it with modern orthodox medicine (Sofowara, 1993). Metal poisoning is a global problem with humans being exposed to a wide range of metals in varying doses and varying time frames. Traditionally, treatment involves removal of the toxic source or chelation therapy. An intermediate approach is needed. This study reported that the use of essential metal supplementation was very important as a strategy to induce metallothionein expression and displace the toxic metal from important biological systems, improving the metal burden of the patient. Specific recommendations are given for supplementation with calcium, zinc and
vitamin E as a broad strategy to improve the status of those exposed to toxic metals (Wayne, 2014). Coriander nutrition is basically due to its green leaves and dried fruits. Like all other green leafy vegetables, its leaves are a rich source of vitamins, minerals and iron. Its leaves contain high amount of vitamin A (β-carotene) and vitamin C. The green herbs contain vitamin C upto 160 mg/100 g and vitamin A upto 12 mg/100 g. It is very low in saturated fat and cholesterol and a very good source of thiamine, zinc and dietary fiber. Green coriander contains 84% water (Girenko, 1982). *Malvaviscus* variegatus, the biological activity of this plant may be attributed to antioxidants, such as polyphenols vitamin C vitamin E beta carotene and other important phytochemicals (Barro et al., 2010). In a previous investigation gossypetin 3-sulphate-8-O-b-Dglucoside and hypolaetin 3-sulphate were identified as the major flavonoid constituents in the leaf tissue of *Malvaviscus* (Nawwar and Buddrus, 1981). Other compounds with chemotaxonomic significance for the Malvaceae are the 8-hydroxyflavonoids so far the isolation of three 8-hydroxyflavonoid sulphates has been reported from *Malvaviscus* leaves (Billeter et al., 1991). A comparative study of the composition in nutraceuticals (phenolics, flavonoids, carotenoids, ascorbic acid, tocopherols sugars and fatty acids) and antioxidant properties of different parts of *Malvaviscus* (leaves flowers immature fruits and leafy flowered stems) was evaluated by (Barro et al., 2010). *Malvaviscus* extracts are reported for their radical scavenging effect (Karakaya, 2004) as well as E. camaldulensis and C. sativa; the later demonstrated also antineoplastic activity in B16 cells (Calliste et al., 2001). Studies reveal a negative correlation between the consumption of diets rich in fruit and vegetables and the risks for chronic diseases such as cardiovascular diseases, arthritis, chronic inflammation and cancers (Saleem et al., 2002; Prior, 2003; Chen et al., 2005 and Zhang al., 2005).

Ficus contain relatively high amounts of crude fibers and polyphenols which represent 1230 and 360 mg/100 g in the dried form, respectively (Vinson et al., 2005 and Solomon et al., 2006). The fruit can be consumed fresh dried and canned being an interesting source of carbohydrates, essential amino acids, vitamins A, E, B1, B2, and C and minerals (Solomon et al., 2006).
So, this study was designed to investigate the effect of \textit{coriander}, \textit{malvasylvestris} and \textit{ficussycomorus} to get rid of toxic heavy metals in albino rats.

\textbf{Materials and Methods}

\textbf{Materials:}
\begin{itemize}
 \item \textit{Malvasylvestris}, \textit{Coriandersativum} and \textit{Ficussycomorus} were purchased from local market at Shebin El-komMenoufiagovernorat.
 \item Casein as main source of protein obtained from Morgan Company, Cairo, Egypt. Vitamins mixture, salt mixture and biological kits were purchased from El – Gomhoria Company., Cairo, Egypt.
 \item Fifty four healthy adult male albino rats "Sprague Dawley strain" weighing 150±5g were used in this study. The rats were obtained from Research Institute of Ophthalmology, Medical Analysis Department, Giza, Egypt. They were housed in galvanized iron cages measuring 40 × 24 × 20 cm (5 rats to each cage).
\end{itemize}

\textbf{Methods:}

\textbf{A . Preparation of samples:}
\begin{itemize}
 \item \textit{Malva}, coriander and ficus were cleaned and wished for removing dust and impurities, then cut them and dried at 50°C for 6h. in case of malva and coriander while for 24h in case of ficus using a fan oven. Then, they were milled by a precession mill to give powder. A grinder mill and sieves were used to obtain a powder particle size of less than 0.2mm.
\end{itemize}

\textbf{B. Biological Experiments}

Basal diet was prepared from fine ingredients per 100g. The diet had the following composition : corn starch 67%, casein 13% \textbf{(AIN, 1993)} corn oil 10%, fiber 5%, Salts mixture4% \textbf{(Hegsted et al., 1941)} vitamin mixture 1% \textbf{(Campbell, 1963)} \textit{Malvasylvestris}, \textit{Coriandersativum} and \textit{Ficussycomorus} were added to the tested diet at the level 15%.

\textbf{C. Experimental Design}

Biological experimental was done at the central laboratory of Research Institute of Ophthalmology, Medical Analysis Department, Giza, Egypt. Rats (n = 54 rats) were housed individually in wire cages in a room maintained at 25 ± 2 °C and kept under normal healthy conditions. All rats (54 rats) were fed on basal diet for one – week
before starting the experiment for to learn non-lethal dose. After this week, they were divided into nine main groups:

Group(1): Rats were fed on basal diet as negative control group.

Group(2): Rats were fed on basal diet with lead (0.2%) as a positive control.

Group(3): Rats were fed on diet with mercury (0.2%) as a positive control.

Group(4): Rats were fed on diet with lead (0.2%) and *ficussycolorus* at the level 15%.

Group(5): Rats were fed on diet with mercury (0.2%) and *ficussycolorus* at the level 15%.

Group(6): Rats were fed on diet with lead (0.2%) and *malvavivestris* at the level 15%.

Group(7): Rats were fed on diet with mercury (0.2%) and *malvavivestris* at the level 15%.

Group(8): Rats were fed on diet with lead (0.2%) and *coriander sativum* at the level 15%.

Group(9): Rats were fed on diet with mercury (0.2%) and *coriander sativum* at the level 15%.

D. Biological evaluation

During the experiment period (28 days), the quantities of diet which were consumed and/or wasted were recorded every day. In addition, rat's weight was recorded weekly. The body weight gain (BWG), food intake (FI), feed efficiency ratio (FER) were determined according to (Chapman et al., 1959).

E. Biochemical evaluation and Histopathological examination

At the end of the experiment period, the rats were fasted overnight before sacrifice and the blood samples were collected from each rat and centrifuged to obtain the serum. Serum was carefully separated and transferred into dry clean ebendorf tubes and kept frozen at -20°C for analysis as described by (Schermer, 1967). Liver and brain were removed from each rat by careful dissection, cleaned from the adhesive matter by a saline solution (0.9%), dried by filter paper, weighed and kept in formalin solution (10%), according to the method described by (Drury and Walling, 1980).
F. Hematological analysis

Different tested parameters in serum were determination using specific methods as follow: Glotamicoxaloacetic transaminas (GOT), glutamic pyruvic transaminas (GPT), urea and createnine according to Kakkar et al. (1984); Aebi (1974); Ellman (1959) & Reitman and Frankel (1957) respectively.

G. Statistical analyses

Statistical analysis was carried out using the programmer of Statistical Package for the Social Sciences (SPSS), PC statistical software (Version 20; Untitled--SPSS Data Editor). The results were expressed as mean ± Standard deviation (mean ± S.D.). Data were analyzed using one way classification, analysis of variance (ANOVA). The differences between means were tested for significance using least significant difference (LSD) test at p<0.05 (Snedcor and Cochran, 1979).

Results and Discussion

In the current study the effect of some vegetables and fruit to get rid of toxic heavy metals in rat's body.

1-Effect of some vegetables and fruits treated with high doses of lead and mercury on body weight gain (BWG).

Data presented in table (1) showed the effect of some vegetables and fruit treated with high doses of lead and mercury on body weight gain (BWG).

It could be noticed that differences between all mean values of tested groups were significant when compared to control negative group. With expecting, 0.02% mercury group was recorded the lowest value of body weight gain. There were no significant differences in BWG among group 4, 5 and 8. Also there is no significant between groups 6 and 7. The best result recorded with group 9 which fed on 0.02% mercury and coriander sativum at the level 15%.

These results are in agreement with Katnoria et al. (2011) Potential health problems associated with a high intake of vegetables and meat products which contain salt of Lead and mercury.
have been linked to decreased energy intakes, weight gain and the weight loss epidemic as indicated.

Meanwhile, Oliveira et al. (2004) found that the rising consumption of vegetables fertilizer and meat additives provides a rising intake of mercury and Lead which can contribute to weight loss and underweight.

Also, Frasco et al. (2005) reported that increased mercury consumption would decrease total energy intake by decreased appetite and decreased fat intake.

Barro et al. (2010) found that high intake of 15% *Malvasylvestris* and 15% *ficusscycomorus* which used as food additives in soft foods, has been linked to increase body weight. This effect led to high content of dietary fiber, phenols as antioxidants compound. Also, Karakaya (2004) who found that 15% *coriander sativum* seeds increased weight gain to contained many biological active compounds including chymopapain and papain which is the ingredient that aids digestive system and a good supply of vitamin A and C that are highly essential for maintaining a good health.

Table (1): Effect of some vegetables and fruit treated with high doses of lead and mercury on body weight gain (BWG).

<table>
<thead>
<tr>
<th>Groups</th>
<th>BWG g / 4 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control.(G1)</td>
<td>43.64a ± 4.21</td>
</tr>
<tr>
<td>Lead 0.2% as a positive control.(G2)</td>
<td>4.61e ± 0.13</td>
</tr>
<tr>
<td>Mercury0.02% as appositive control.(G3)</td>
<td>1.83f ± 0.18</td>
</tr>
<tr>
<td>Lead0.2% and ficussycomorus at the level 15%.(G4)</td>
<td>15.74d ± 0.21</td>
</tr>
<tr>
<td>Mercury 0.02% and ficussycomorus at the level 15%. (G5)</td>
<td>14.12d ± 1.19</td>
</tr>
<tr>
<td>Lead 0.2% and Malva sylvestris at the level 15%.(G6)</td>
<td>17.54c ± 1.11</td>
</tr>
<tr>
<td>Mercury0.02% and Malva sylvestris at the level 15%.(G7)</td>
<td>16.68c ± 1.2</td>
</tr>
<tr>
<td>Lead0.2% and coriander sativum at the level 15%.(G8)</td>
<td>15.15d ± 2.19</td>
</tr>
<tr>
<td>Mercury 0.02% and coriander sativum at the level 15%.(G9)</td>
<td>18.03b ± 3.21</td>
</tr>
<tr>
<td>LSD: P ≤0.05</td>
<td>0.48</td>
</tr>
</tbody>
</table>

Means in the same column with different litters are significantly different (P ≤0.05).
2-Effect of some vegetables and fruits treated with high doses of lead and mercury on Feed Intake (FI) and feed efficiency ratio (FER).

Data present in table (2) showed the effect of some vegetables and fruits treated with high doses of lead and mercury on food intake (FI) and feed efficiency ratio (FER) (mean± SD).

It is clear that no significant differences in food intake (FI) between both positive controls which was 2.83 ± 0.18 and 2.69 ± 0.04g/day groups. From the same table, it could be noticed that the differences in values of food intake between all treated groups were considerable as compared to negative and positive control groups. The obtained data revealed a high variation in food intake between treatments and the controls group, this may be due to the acceptability of the added materials. These results are in accordance with those reported by Frasco et al. (2005) who found that mercury decreased appetite and decreased fat intake. Calliste et al. (2001) reported that 15% coriander sativum is a source of antioxidants vitamin as A that prevents damage caused by free radicals that may cause some forms of cancer.

According to data present in the same table (4), it could be observed that feed efficiency ratio (FER) for groups which fed on 15% tested vegetables and fruit were 0.055± 0.003, 0.059 ± 0.001, 0.054 ± 0.001, 0.049 ± 0.003, 0.052 ± 0.001 and 0.052 ± 0.001 for G (3, 4, 5, 6, 7, 8 and 9), respectively. While, in control negative group was 0.089± 0.001. These results denote that there were significant increases in feed efficiency ratio (FER) for all groups when compared with both control positive groups. The highest value of feed efficiency ratio (FER) was found in 15% Malvasylvestris group. It is noticed that a significant decreases in BWG for control group compared to all groups, was indicated and confirmed that the real effect for BWG due to vegetables and fruit administration.

From the obtained results, it could be observed that treating rats with the tested vegetables and fruit led to increase in BWG, FI and FER when compared with both positive controls while lower than negative control. These results were in agreement with those reported by Calliste et al. (2001) who said that dietary fiber (DF) derived from fruits and vegetables have a relatively high proportion of SDF. Barroet al. (2010) stated that dietary fiber of 15% Malvasylvestris had bioactive compounds with antioxidant properties, such as flavonoids and vitamin C.
Table (2): Effect of some vegetables and fruit treated with high doses of Lead and mercury on feed intake (FI) and feed efficiency ratio (FER) (mean± SD).

<table>
<thead>
<tr>
<th>Groups</th>
<th>FI (g/day)</th>
<th>FER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control. (G1)</td>
<td>11.71^a ± 0.22</td>
<td>0.089^a ± 0.001</td>
</tr>
<tr>
<td>Lead 0.2% as a positive control. (G2)</td>
<td>2.83^e ± 0.11</td>
<td>0.038^d ± 0.001</td>
</tr>
<tr>
<td>Mercury 0.02% as appositive control. (G3)</td>
<td>2.69^e ± 0.02</td>
<td>0.016^e ± 0.001</td>
</tr>
<tr>
<td>Lead 0.2% and ficus sycomorus at the level 15%. (G4)</td>
<td>6.76^c ± 0.12</td>
<td>0.055^b ± 0.002</td>
</tr>
<tr>
<td>Mercury 0.02% and ficus sycomorus at the level 15%. (G5)</td>
<td>5.68^d ± 0.27</td>
<td>0.059^b ± 0.002</td>
</tr>
<tr>
<td>Lead 0.2% and Malva sylvestris at the level 15%. (G6)</td>
<td>7.7^b ± 0.24</td>
<td>0.054^b ± 0.001</td>
</tr>
<tr>
<td>Mercury 0.02% and Malva sylvestris at the level 15%. (G7)</td>
<td>7.98^b ± 0.042</td>
<td>0.049^c ± 0.001</td>
</tr>
<tr>
<td>Lead 0.2% and coriander sativum at the level 15%. (G8)</td>
<td>6.86^c ± 0.37</td>
<td>0.052^b ± 0.002</td>
</tr>
<tr>
<td>Mercury 0.02% and coriander sativum at the level 15%. (G9)</td>
<td>8.32^b ± 0.43</td>
<td>0.052^b ± 0.002</td>
</tr>
<tr>
<td>LSD P ≤ 0.05</td>
<td>0.32</td>
<td>0.006</td>
</tr>
</tbody>
</table>

Means in the same column with different litters are significantly different (P ≤ 0.05).
3- The effect of some vegetables and fruit treated with high doses of lead and mercury on kidney functions (mean± SD).

Data given in table (3) showed the effect of some vegetables and fruit treated with high doses of lead and mercury on serum urea levels (mean± SD).

It could be observed that the highest value of serum urea levels was found in rats which receive lead as positive control group. No significant changes were found in serum urea levels between groups 4 and 9. Also, there is no significant among the other treated groups.

It is clear to notice that creatinine levels in control negative group was 0.46 ± 0.02 mg/dl which significantly decreased when compared with rats which received the levels 2 g mercury salt and lead salt as positive controls and groups fed on these material with all types of vegetables and fruit. Meanwhile, rats of groups 4, 5, 6, 7, and 8 which received vegetables and fruit, creatinine levels of these groups were significant differences between each other and showed significantly increasing when compared to control negative group. Groups 9 recorded the lowest creatinine value which showing a significant decreased as compared to the other groups and a significant increased when compared with control negative group.

Table (3): Effect of some vegetables and fruit treated with high doses of lead and mercury on serum urea and creatinine levels (mean± SD).

<table>
<thead>
<tr>
<th>Groups</th>
<th>Urea (mg/dl)</th>
<th>Creatinine (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control (G1)</td>
<td>37 ± 4.23</td>
<td>0.46 ± 0.12</td>
</tr>
<tr>
<td>Lead 0.2% as a positive control (G2)</td>
<td>48.33 ± 3.21</td>
<td>1.45 ± 0.22</td>
</tr>
<tr>
<td>Mercury 0.02% as appositive control (G3)</td>
<td>47.33 ± 3.31</td>
<td>1.45 ± 0.15</td>
</tr>
<tr>
<td>Lead 0.2% and ficussycormoros at the level 15% (G4)</td>
<td>44.33 ± 4.12</td>
<td>1.33 ± 0.35</td>
</tr>
<tr>
<td>Mercury 0.02% and ficussycormoros at the level 15% (G5)</td>
<td>45.3 ± 1.1</td>
<td>1.35 ± 0.50</td>
</tr>
<tr>
<td>Lead 0.2% and Malvasylvestris at the level 15% (G6)</td>
<td>42.6 ± 2.4</td>
<td>1.31 ± 0.64</td>
</tr>
<tr>
<td>Mercury 0.02% and Malvasylvestris at the level 15% (G7)</td>
<td>42.23 ± 2.72</td>
<td>1.27 ± 0.15</td>
</tr>
<tr>
<td>Lead 0.2% and coriander sativum at the level 15% (G8)</td>
<td>44 ± 3.6</td>
<td>1.30 ± 0.45</td>
</tr>
<tr>
<td>Mercury 0.02% and coriander sativum at the level 15% (G9)</td>
<td>40 ± 0.7</td>
<td>1.15 ± 0.24</td>
</tr>
<tr>
<td>LSD: P ≤0.05</td>
<td>3.03</td>
<td>0.063</td>
</tr>
</tbody>
</table>

Means in the same column with different litters are significantly different (P ≤0.05).
The effect of some vegetables and fruit treated with high doses of lead and mercury on liver functions (mean± SD).

Data presented in table (4) showed the effect of some vegetables and fruit treated with high doses of lead and mercury on levels of serum AST (mean± SD).

It could be observed that in control negative group GOT was 39± 2 u/l which significantly increased in both controls group being 103 ± 3 u/l and 105 ± 3. But, the levels of GOT in groups 4, 5, 6, 7, 8 and 9 which were 90± 5, 94 ± 7, 84 ± 6, 80 ± 5, 84 ± 7 and 72 ± 6 u/l, respectively showed significant increases as compared to control negative group and significant decreases as compared to control positive groups. Also, there were no significant changes between groups of 4 and 5, between groups 6, 7 and 8. The strongest effect in serum GOT levels recorded for group 9 which fed on basal diet with 15% coriander sativum.

It is clear that the serum level of (GPT) in group 9 which fed on mercury with 15% coriander sativum was the lowest level which being 50 ± 1.08 U/L and showing no significant change with group which fed on lead with 15% coriander sativum which was 55 ± 3.6 U/L. At the same time, rats which received lead with 15% fisussycolor and lead with 15% Malvasylvestris showed no significantly different of lead with 15% Malvasylvestris in serum level of GPT. Meanwhile, rats which received vegetables and fruit with mercury and lead showed a significant increase in the level of GPT as compared to control negative group while, its decreased when compared with both positive controls. Group fed on lead with 15% Malvasylvestris group was the highest value of GPT and the lowest group was mercury with 15% coriander sativum group.

These results are in agreement with coriander sativum Edeoga et al. (2005) they revealed that mercury had a potential role to cause injuries in several organs and tissues. The increased consumption of mercury and Lead sources in foods and drinks is linked with the hepatic metabolism and caused lipogenesis and ATP depletion, which leads to fat accumulates in the liver by the primary effect of NO oxidation. It could be hypothesized that increased mercury and Lead sources consumption contributes to the development of non-alcoholic fatty liver disease (NAFLD) which can progress to cirrhosis over time in some individuals.
Also, Billeter et al. (1991) mentioned that *Malvasylvestris* (*Mangifera indica* L.) seed is one of the most important food waste which containing phenolic antioxidant compound which protected liver from any free radical.

Stahuet et al. (2007) found that the *Malva sylvestris* seed extraction contained dietary fiber or essential oils, the flavonoids hesperidin and narirutin which reduced the residual mercury levels and the degree of lipid oxidation.

Foda (1998) stated that *ficussycomorus* had high antioxidant activity and might be rich source of natural antioxidants which protect liver tissues from damage.

Girenko (1982) found that *coriander sativum* contained significant antioxidant activity and had hepatoprotection effect seeds by restoring the normal hepatic architecture.

Table (4): Effect of some vegetables and fruit to high doses of Lead and mercury by serum levels of GOT and GPT (mean± SD).

<table>
<thead>
<tr>
<th>Groups</th>
<th>GOT(U/L)</th>
<th>GPT(U/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control (G1)</td>
<td>39 ± 2</td>
<td>45 c ± 0.6</td>
</tr>
<tr>
<td>Lead 0.2% as a positive control (G2)</td>
<td>103 a ± 3</td>
<td>87 b ± 2.3</td>
</tr>
<tr>
<td>Mercury 0.02% as appositive control (G3)</td>
<td>105 a ± 3</td>
<td>95 a ± 5.4</td>
</tr>
<tr>
<td>Lead 0.2% and ficussycomorus at the level 15%. (G4)</td>
<td>90 b ± 5</td>
<td>72.66 c ± 0.34</td>
</tr>
<tr>
<td>Mercury 0.02% and ficussycomorus at the level 15%. (G5)</td>
<td>94 b ± 7</td>
<td>77 c ± 3.8</td>
</tr>
<tr>
<td>Lead 0.2% and Malva sylvestris at the level 15%. (G6)</td>
<td>84 c ± 6</td>
<td>55 e ± 3.6</td>
</tr>
<tr>
<td>Mercury 0.02% and Malva sylvestris at the level 15%. (G7)</td>
<td>80 c ± 5</td>
<td>62.66 d ± 3.34</td>
</tr>
<tr>
<td>Lead 0.2% and coriander sativum at the level 15%. (G8)</td>
<td>84 c ± 7</td>
<td>67 d ± 1.4</td>
</tr>
<tr>
<td>Mercury 0.02% and coriander sativum at the level 15%. (G9)</td>
<td>72 d ± 6</td>
<td>50 e ± 1.8</td>
</tr>
<tr>
<td>LSD: P ≤ 0.05</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

Means in the same column with different litters are significantly different. (P ≤ 0.05).
Histopathological results

A-Brain:

Photo (1), showed brain's rat which fed on basal diet, the brain structure showing no histopathological changes. In Photo (2), brain's rat which fed on basal diet with lead 0.2% showed that cellular oedema, meuronophagia and perivascular glia cells, meuronal degeneration and meuronophagia. In Photo (3), brain's rat which fed on basal diet with mercury 0.02% showed that necrosis of some neurous. In Photo (4), brain's rat which fed on basal diet with lead 0.2% and 15% Ficus showed that pyknosis of some neurous and proliferation of glia cells. In Photo (5), brain's rat which fed on basal diet with mercury 0.02% and 15% Ficus showed that no histopathological changes. In Photo (6), brain's rat which fed on basal diet with lead 0.2% and 15% malvasylvestris showed that pyknosis of neurous. In Photo (7), brain's rat which fed on basal diet with mercury 0.02% and 15% malvasylvestris showed that no histopathological changes. In Photo (8), brain's rat which fed on basal diet with lead 0.2% and 15% coriander showed that meuronal degeneration and meuronophagia. Brain's rat which fed on basal diet with mercury 0.02% and 15% coriander showed that no histopathological changes (Photo 9).
Photo(3): Brain of rat fed on diet with 0.02% Mercury as positive control

Photo(4): Brain of rat fed on diet with lead and 15% ficus

Photo(5): Brain of rat fed on diet with mercury and 15% ficus

Photo(6): Brain of rat fed on diet with lead and 15% malvasylvestris
Photo(7): Brain of rat fed on diet with mercury and 15% *malvavasylvestris*

Photo(8): Brain of rat fed on diet with lead and 15% *coriander*

Photo(9): Brain of rat fed on diet with mercury and 15% *coriander*
B-Liver:
Liver's rat which fed on basal diet, the liver structure showing the normal histological (photo 10). In photo (11), Liver's rat which fed on basal diet with lead 0.2% showed the congestion of central vien and hepatic simusoids and kupijjer cells activation and with local hepatic necrosis associated mononuclear cells infiltration. In photo (11), Liver's rat which fed on basal diet with mercury 0.02% showed local hepatic necrosis associated mononuclear cells infiltration also, showed that slight vacuoligation of hepatocytes Liver's rat which fed on basal diet with lead 2% and Ficus 15% showed that hydropic degeneration of hepatocytes (Photo 11). Liver's rat which fed on basal diet with mercury 0.02% and Ficus 15% showed no histopathological changes (Photo 12). Liver's rat which fed on basal diet with lead 2% and *malvasylvestris* 15% showed that slight activation of kupijjer cells (Photo 13). Liver's rat which fed on basal diet with lead 2% and *malvasylvestris* 15% showed that kupijjer cells activation (Photo 14). Liver's rat which fed on basal diet with mercury 0.02% and *malvasylvestris* 15% showed that slight kupijjer cells activation (Photo 16). Liver's rat which fed on basal diet with lead 2% and *coriander* 15% showed that kupijjer cells activation (Photo 17). Liver's rat which fed on basal diet with mercury 0.02% and *coriander* 15% showed slight hydropic degeneration of hepatocytes (Photo 18).

![Photo (10): liver of rat fed on diet as control negative](image-url)
Photo (11): liver of rat fed on diet with lead 0.2% as positive control

Photo (12): liver of rat fed on diet with mercury 0.02% as positive control

Photo (13): liver of rat fed on diet with lead and 15% ficus

Photo (14): liver of rat fed on diet with mercury and 15% ficus
Photo (15): liver of rat fed on diet with lead and 15% *malvasylvestris*

Photo (16): liver of rat fed on diet with mercury and 15% *malvasylvestris*

Photo (17): liver of rat fed on diet with lead and 15% *coriander*

Photo (18): liver of rat fed on diet with mercury and 15% *coriander*
References

