The Effect of Arachidonic acid and calcium deposition on Bony mass in experimental animal

Sahar Othman El Shafei, Khaled Ali Abdel Rahman Shaheen, and Souad Hashem Mustafa

Abstract:
Bones are one of the most important parts of the human body, as weak bones may lead to general weakness as it shields for all body system.

Arachidonic acid is a polyunsaturated fatty acid present in the phospholipids (especially phosphatidylethanolamine, phosphatidylcholine, and phosphatidylinositides) of membranes of the body's cells, and is abundant in the brain, muscles, and liver. Skeletal muscle is an especially active site of arachidonic acid retention, accounting for roughly 10-20% of the phospholipid fatty acid content on average. It still plays fundamental role in reducing pathogenicity.

This study aimed to investigate the effect of Arachidonic acid (deficiency & treatment) on calcium deposition and bones density. Compare the results of those groups with the group affected by decrease Arachidonic acid and increase calcium deposition.

Experimental design:
Thirty sex healthy adult male albino rats were fed on standard diet for one week for adaptation. After this week, they were divided into six groups. The first group (6 rats) fed on basal diet (as a negative control group).

The second group (6 rats) fed on standard diet without aracidonic acid and double dose of calcium (as a positive control group).

The third group (6 rats) fed on standard diet with aracidonic acid (1000 mg) and the double dose of calcium.

The fourth group (6 rats) fed on standard diet with aracidonic acid (1150 mg) and the double dose of calcium.
The five group (6 rats) fed on standard diet with aracidonic acid (1300 mg) and the double dose of calcium

The last group (6 rats) fed on standard diet with aracidonic acid (1450 mg) and the double dose of calcium

Conclusion:
Results obtained for this study led to several conclusions:

- it is important for The Relation ship between Arachidonic acid and first time walking in children bone mass increase and the best Results in 1450 mg.

Keywords: arachidonic acid-like omega-3- fatty acids (DHA)- calcium deposition

Introduction

Arachidonic acid (AA) sometimes ARA) is a polyunsaturated omega-6fatty acid 20:4(ω-6), or 20:4(5,8,11,14). It is structurally related to the saturated arachidic acid found in cupuaçu butter. *(Dorland’s Medical Dictionary, 2007)*

In chemical structure, Arachidonic acid is a carboxylic acid with a 20-carbon chain and four cis-double bonds; the first double bond is located at the sixth carbon from the omega end.

Some chemistry sources define 'arachidonic acid' to designate any of the eicosatetraenoic acids. However, almost all writings in biology, medicine, and nutrition limit the term to all cis-5,8,11,14-eicosatetraenoic acid. Sources (meat, eggs) or is synthesized from linoleic acid. *(MacDonald, et al. 1984) and (Rivers, et al. 1975).*

Arachidonic acid is not one of the essential fatty acids. However, it does become essential if a deficiency in linoleic acid exists or if an inability to convert linoleic acid to arachidonic acid occurs. Some mammals lack the ability or have a very limited capacity to convert linoleic acid to arachidonic acid, making it an essential part of their diets. Since little or no arachidonic acid is found in common plants, such animals are obligate carnivores; the cat is a common example having inability to desaturate essential fatty acids *(MacDonald, et al. 1984) and (Rivers, et al. 1975).*

In the body: muscle growth Arachidonic acid promotes the repair and growth of skeletal muscle tissue via conversion to prostaglandin PGF2alpha during and following physical exercise.
Trappe, et al. (2013). Arachidonic acid does still play a central role in inflammation related to injury and many diseased states. How it is metabolized in the body dictates its inflammatory or anti-inflammatory activity. Individuals suffering from joint pains or active inflammatory disease may find that increased arachidonic acid consumption exacerbates symptoms, presumably because it is being more readily converted to inflammatory compounds. Likewise, high arachidonic acid consumption is not advised for individuals with a history of inflammatory disease, or who are in compromised health. (Birdwell, et al. 1994).

Material And Methods.

Materials:

Skimmed milk and corn starch were purchased from local market, Cairo, Egypt.

Chemicals:

DL methionine, choline chloride, vitamins, minerals, omega3,6,9 and kits required were obtained from El- Gomhorya Company for chemicals and Drugs, Cairo, Egypt. Omega 6 the unit contain 0f 296 mg of linoleic acid and gama linolenic acid. Induction of 2000mg calcium.

Animals:

Thirty sex healthy adult male albino rats "Sprague Dawley strain" weighing (150±10g.) were obtained from vaccine and immunity organization Helwan Farm, Cairo, Egypt.

Diets: Standard diet was prepared as previously described by (Reeves, et al., 1993).

Methods:

Biological Experimental.

Thirty sex healthy adult male albino rats "Sprague Dawley strain" weighing (150±10g.) were kept in wire cages. The diet was introduced to the rats in special food cups to avoid scattering of food. Also water was provided to the rats. Food and water were provided ad-libitum and checked daily.

Induction of Omega 3,6,9 0mega 6 the unit contain 0f 296 mg of linoleic acid and gama linolenic acid. Induction of 2000mg calcium.

Experimental design:

Thirty sex healthy adult male albino rats were fed on standard diet for one week for adaptation. After this week, they were divided into
six groups, each group with similar total body weight and were housed individually in wire cages. The first group (6 rats) fed on basal diet fed on standard diet (as a negative control group). The second group (6 rats) fed on standard diet without arachidonic acid and double dose of calcium (as a positive control group). The third group (6 rats) fed on standard diet with arachidonic acid (1000 mg) and the double dose of calcium. The fourth group (6 rats) fed on standard diet with arachidonic acid (1150 mg) and the double dose of calcium. The fifth group (6 rats) fed on standard diet with arachidonic acid (1300 mg) and the double dose of calcium. The last group (6 rats) fed on standard diet with arachidonic acid (1450 mg) and the double dose of calcium. At the end of the experiment (4 weeks), animals sacrificed under anesthesia. Blood samples were taken in dry centrifuge tubes from the hepatic portal vein. Serum was separated and kept in plastic vial at -20°C until analysis.

Biological evaluation:

- **Calculation of body weight gain (BWG) and relative organs’ weight:**

 All animals were individually weighed once a week during the experiment. The difference between the initial and final body weight was calculated as follows:

 \[BWG \text{ (g)} = \text{final weight (g)} - \text{initial weight (g)} \]

- **Calculation of feed intake (FI) and feed efficiency ratio (FER):**

 The total food consumed was calculated by subtracting the remaining food for each animal at the end of each week from that allocated to it at the start of the week. Food wastage was weighed and subtracted.

 The feed efficiency ratio was calculated according to the following equation as mentioned by (Hosoya, 1980).

 \[\text{FER} = \frac{\text{Body weight gain (g)}}{\text{Feed intake (g)}} \]

Biochemical analysis:

Determination of lipid profiles:
Determination of Triglycerides:
The quantitative enzymatic colorimetric determination of triglycerides in serum using kits Stanbio laboratory according to (Wahlefeld, 1974).

Principle:
1- Glycerol and fatty acids first formed by lipase action on the triglycerides.
2- Glycerol is then phosphorylated by adenosine-5-triphosphate (ATP) to produce glycerol -3- phosphate (G-3-P) and adenosine-5-diphosphate (ADP) in a reaction catalyzed by glycerol kinase (GK):

\[
\text{GK} \quad \text{Glycerol} + \text{ATP} \rightarrow \text{G-3-P} + \text{ADP}
\]

3- The G-3-P oxidized by glycercylphosphate oxidase (GPO) producing dihydroxyacetone phosphate (DAP) and hydrogen peroxide:

\[
\text{GPO} \quad \text{G-3-P} + \text{O}_2 \rightarrow \text{DAP} + \text{H}_2\text{O}_2
\]

4- Peroxide reacts with a 4-aminoantipyrine and 4-chlorophenol under the catalytic influence of peroxidase (POD) to form quinoneimine

\[
\text{POD} \quad 2\text{H}_2\text{O}_2 + 4\text{- aminoantipyrine} + 4\text{-chlorophenol} \rightarrow \text{Quinoneimine} + \text{HCl} + 4\text{H}_2\text{O}
\]

Lipid Clearing Factor (LCF): a mixture of special additives developed by Stanbio integrated into the triglyceride reagent to help minimize interference due to lipemia.

Read the absorbance at 500nm by (SpectronicUnicam No. 082329 analytical Systems).(Wahlefeld, 1974).

Determination of Cholesterol:
Quantitative enzymatic colorimetric determination of total cholesterol in serum using kits Stanbio laboratory according to (Stein, 1986).

Determination of High-Density Lipoprotein (HDL):
Stanbio HDL cholesterol kits use for in the determination of HDL cholesterol in serum according to (Stein, 1986).

Determination of Low-density lipoprotein (LDL):
Low-density lipoprotein (LDL) cholesterol according to (Friedewald, et al., 1972)
Determination of Aminotransferase (ALT and AST):
Aminotransferase were determined using kits supplied from Setinel CH according to the method of (Bergmeyer and Horder, 1980).

Determination of Gamma –GT:
Gamma – GT was determined using kits supplied Quimica clinical Aplicada S.A. according to (Szasz, 1969).

Determination of Blood Urea Nitrogen (BUN):
Urea nitrogen was determined in the serum according to (Tabacco, et al., 1979).

Determination of Uric Acid:
Enzymatic colorimetric method to determination of uric acid by using Sentinel CH kits according to (Fossati, et al., 1980).

Determination of Creatinine:
Kinetic determination of Creatinine using BioMerieux kits according to (Houot, 1985).

Statistical analysis:
Statistical analysis was carried out using the programme of Statistical Package for the Social Sciences (SPSS), PC statistical software (Version22; Untitled–SPSS Data Editor). (SPSS), PC statistical software (Version 22; Untitled–SPSS Data Editor).

The results were expressed as mean ± standard error (mean ± S.E.). Data were analyzed using one way classification, analysis of variance (ANOVA). The differences between means were tested for significance using least significant difference (LSD) test at p<0.05. Independent T test was also used to determine the statistical difference between two means (Sendcor and Cochran, 1979).

Histopathological examination:
Hearts ,livers and kidneys according to (Lambergton and Rothstein, 1988).

Results:
Data in table (1) showed the effect of Aracidonic and double dose of Calcium(feed intak ,Body weight again and feed efficiency ratio) on of bony massin rats The observation from table (1) to illustrate the rate of increas perecentages between the six groups . it was found that the feed intak(FI), observed negative control group(1)was14.8 ±0.76 , which was significantly lower than G2 group, also positive control group was significantly higher than G1 group while G5 group
was significantly higher than G3 & G4 groups. There were no significantly changes among G2, G3 and G4 groups. The observation from table (1) to illustrate the rate of increas percentages between the six groups. It was found that the Body weight again (BWA) weight of the positive control group was gerater than the negative control group.

The observation from table (1) to illustrate the rate of increasing percentages between the six groups. It was found that the Body weight again (BWA) weight of the positive control group was greater than the negative control group.

The obtained results indicated feed efficiency ratio (FER) observed negative control group was 0.025 ± 0.0.12, which was significantly lower than G6.0.037 ± 0.0.027 also positive control group was significantly higher than G1 group. There were no significantly changes among G4, G5. Data in table (2) showed the effect of Aracidonic and double dose of Calcium on liver function (ALT, AST and ALP) of bony massin rats. The obtained results indicated ALT, observed negative control group was 58.7 ± 7.64, which was significantly higher than G5 group 38.0 ± 2.00, also positive control group 53.7 ± 2.89 was significantly higher than G5 group 38.0 ± 2.00, but G5 group 38.0 ± 2.00 was significantly lower than G3 58.0 ± 4.00 & G4 55.7 ± 3.51. There were no significantly changes among G3, G4 and G6 groups.

The obtained results indicated AST, it could be observed negative control group was 188.7 ± 8.15, which was no significantly with all tested groups, also positive control group was no significantly with all tested groups, but G3 group 194 ± 15.52 was significantly higher than G5135.7 ± 19.86 & G6135.7 ± 27.47. There were no changes among G6, G5 the obtained results indicated ALP, it could be observed negative control group was 191.0 ± 29.82, which was significantly higher than G5 group, while positive control group was significantly Lower than G6 group 238.0 ± 18.08, but G6 group was significantly higher than G3, G4 and G5 groups. Data in table (3) showed the effect of Aracidonic and double dose of Calcium on Protein of bony massin rats (Total Protein, Albumin and Globulin). The obtained results indicated Total Protein, observed negative control group was 7.4 ± 0.46, which was no significantly with all tested groups, also positive control group was no significantly with all tested groups. There were no significantly changes
among G3 6.9 ±0.06, G4 6.7 ±0.35, There were no significantly changes among G2 7.0 ±1.01 and G6 7.0 ±0.40.

The obtained results indicated Albumin, observed negative control group was 3.7 ± 0.06, which was no significantly with all tested groups, also positive control group was no significantly with all tested groups. There were no significantly changes among G1, G2, G3 and G4 groups. But G5 group 3.9 ± 0.10 which was significantly higher than G6 group 3.8 ± 0.36.

The obtained results indicated Globulin, observed negative control group was 3.7 ± 0.40, which was significantly higher with all tested groups, also positive control group was no significantly with G3 3.3 ±0.21. There were no significantly changes among G5 3.2 ±0.26 and G6 3.2 ±0.76. Data in table (4) showed the effect of Aracodonic and double dose of Calcium on Renal function of bony massin rats (Creatinine, Uric acid and Urea). The obtained results indicated Creatinin observed negative control group 0.8 ±0.00, which was no significantly with all tested groups, while positive control group was significantly Lower than G3 0.8 ±0.06. There were no significantly changes among, G4, G5 0.9 ±0.06 and There were no significantly changes among G6,G3 0.8 ±0.06 groups.

The obtained results indicated Uric acid, it could be observed negative control group was 3.4 ±0.36, which was significantly higher with G3-G4-G5-G2 groups, while positive control group was significantly Lower than G6 3.6 ±0.42. There were no significantly changes among G3 2.2 ±0.26, G4 2.3 ±0.78.

The obtained results indicated Urea, it could be observed negative control group was 35.6 ±8.80, which was significantly higher with all tested groups, also positive control group was no significantly with G3 23.6 ±0.42. Data in table (5) showed the effect of Aracodonic & double dose of Calcium on Lipid function of bony massin rats (Total Cholesterol, Triglycerides Cholesterol, HDL Cholesterol, LDL Cholesterol and VLDL Cholesterol). The obtained results indicated Total Cholesterol, observed negative control group was 54.8 ±6.09, which was significantly lower than with all tested groups without G3, also positive control group 57.5 ± 8.61 was no significantly with G3-G5 groups.
The obtained results indicated Triglycerides, observed negative control group was 88.6±11.43, which was significantly higher with all tested groups with out G2111.8 a ±59.06. There were no significantly changes among G3, G4, G5 and G6 groups.

The obtained results indicated HDL Cholesterol, observed negative control group was 19.2±3.03, which was no significantly with all tested groups, also positive control group was no significantly with all tested groups. There were no significantly changes among G3, G4, G5 and G6 groups.

The obtained results indicated LDL Cholesterol, observed negative control group was 17.9±6.03, which was no significantly with G6, also positive control group 15.8 a±4.79 was significantly lower than G323.4 a ±6.73.

The obtained results indicated VLDL Cholesterol, observed negative control group was 17.7±2.29, which was significantly higher than G3,G4,G5 groups, also positive control group 22.4 a±11.81 was significantly higher than all tested groups

Discussion:

Arachidonic acid is marketed as an anabolic bodybuilding supplement in a variety of products. Supplementation of arachidonic acid (1,500 mg/day for 8 weeks) has been shown to increase lean body mass, strength, and anaerobic power in experienced resistance-trained men. This was demonstrated in a placebo-controlled study at the University of Tampa. Thirty men (aged 20.4 ± 2.1 years) took arachidonic acid or a placebo for 8 weeks, and participated in a controlled resistance-training program. After 8 weeks, lean body mass (LBM) had increased significantly, and to a greater extent, in the ARA group (1.62 kg) vs. placebo (0.09 kg) (p<0.05). The change in muscle thickness was also greater in the ARA group (.47 cm) than placebo (.25 cm) (p<0.05). Wingate anaerobic power increased to a greater extent in ARA group as well (723.01 to 800.66 W) vs. placebo (738.75 to 766.51 W). Lastly, the change in total strength was significantly greater in the ARA group (109.92 lbs.) compared to placebo (75.78 lbs.). These results suggest that ARA supplementation can positively augment adaptations in strength and skeletal muscle hypertrophy in resistance-trained men.(Ormes, Jacob.2007)
An earlier clinical study examining the effects of 1,000 mg/day of arachidonic acid for 50 days found supplementation to enhance anaerobic capacity and performance in exercising men. During this study, a significant group–time interaction effect was observed in Wingate relative peak power (AA: 1.2 ± 0.5; P: -0.2 ± 0.2 W•kg⁻¹, p=0.015). Statistical trends were also seen in bench press 1RM (AA: 11.0 ± 6.2; P: 8.0 ± 8.0 kg, p=0.20), Wingate average power (AA:37.9 ± 10.0; P: 17.0 ± 24.0 W, p=0.16), and Wingate total work (AA: 1292 ± 1206; P: 510 ± 1249 J, p=0.087). AA supplementation during resistance training promoted significant increases in relative peak power with other performance-related variables approaching significance. These findings support the use of AA as an ergogenic. (Roberts, 2011).

Table (1) Effect of Aracidonic and double dose of Calcium on (feed intake, Body weight again and feed efficiency ratio).

<table>
<thead>
<tr>
<th>Groups</th>
<th>FI(gm/day)</th>
<th>BWG(gm)</th>
<th>FER%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control (G1)</td>
<td>14.8⁺ ±0.76</td>
<td>37.5⁻±12.1</td>
<td>.025⁺±0.12</td>
</tr>
<tr>
<td>Positive control (G2) + Calcium</td>
<td>14.9⁺ ±0.77</td>
<td>47⁺±15.1</td>
<td>.031⁺±0.32</td>
</tr>
<tr>
<td>Aracidonic (1000mg) + Calcium (G3)</td>
<td>14.9⁺ ±0.77</td>
<td>49⁺±16.1</td>
<td>.032⁺±0.04</td>
</tr>
<tr>
<td>Aracidonic (1150mg) + Calcium (G4)</td>
<td>14.9⁺ ±0.77</td>
<td>52⁺±17.1</td>
<td>.034⁺±0.016</td>
</tr>
<tr>
<td>Aracidonic (1300mg) + Calcium (G5)</td>
<td>15.01⁺ ±0.79</td>
<td>52.1±17.2</td>
<td>.034⁺±0.015</td>
</tr>
<tr>
<td>Aracidonic (1450mg) + Calcium (G6)</td>
<td>15.08⁺ ±0.80</td>
<td>56.3±19</td>
<td>.037⁺±0.027</td>
</tr>
</tbody>
</table>

Table (2) Effect of Aracidonic & double dose of Calcium on liver function of bony massin rats

<table>
<thead>
<tr>
<th>Groups</th>
<th>ALT (u/l)</th>
<th>AST (u/l)</th>
<th>ALP (u/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control (G1)</td>
<td>58.7⁺±7.64</td>
<td>188.7⁺±8.15</td>
<td>191.0⁺±29.82</td>
</tr>
<tr>
<td>Positive control (G2) + Calcium</td>
<td>53.7⁺±2.89</td>
<td>176.0⁺±29.10</td>
<td>131.7⁺±25.17</td>
</tr>
<tr>
<td>Aracidonic (1000mg) + Calcium (G3)</td>
<td>58.0⁺±4.00</td>
<td>194⁺±15.52</td>
<td>135.3⁺±20.82</td>
</tr>
<tr>
<td>Aracidonic (1150mg) + Calcium (G4)</td>
<td>55.7⁺±3.51</td>
<td>169.3⁺±10.79</td>
<td>176⁺±14.00</td>
</tr>
<tr>
<td>Aracidonic (1300mg) + Calcium (G5)</td>
<td>38.0⁺±2.00</td>
<td>135.7⁺±19.86</td>
<td>110.3⁺±22.68</td>
</tr>
<tr>
<td>Aracidonic (1450mg) + Calcium (G6)</td>
<td>47.3⁺±2.31</td>
<td>135.7⁺±27.47</td>
<td>238.0⁺±18.08</td>
</tr>
</tbody>
</table>

Table (3) Effect of Aracidonic and double dose of Calcium on Protein of bony massin rats

<table>
<thead>
<tr>
<th>Groups</th>
<th>Total Protein(u/l)</th>
<th>Albumin(u/l)</th>
<th>Globulin(u/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control (G1)</td>
<td>7.4⁺±0.46</td>
<td>3.7⁺±0.06</td>
<td>3.7⁺±0.40</td>
</tr>
<tr>
<td>Positive control (G2) + Calcium</td>
<td>7.0⁺±1.01</td>
<td>3.7⁺±0.15</td>
<td>3.3⁺±0.85</td>
</tr>
<tr>
<td>Aracidonic (1000mg) + Calcium (G3)</td>
<td>6.9⁺±0.06</td>
<td>3.7⁺±0.15</td>
<td>3.3⁺±0.21</td>
</tr>
<tr>
<td>Aracidonic (1150mg) + Calcium (G4)</td>
<td>6.7⁺±0.35</td>
<td>3.7⁺±0.06</td>
<td>3.0⁺±0.29</td>
</tr>
<tr>
<td>Aracidonic (1300mg) + Calcium (G5)</td>
<td>7.1⁺±0.17</td>
<td>3.9⁺±0.10</td>
<td>3.2⁺±0.26</td>
</tr>
<tr>
<td>Aracidonic (1450mg) + Calcium (G6)</td>
<td>7.0⁺±0.40</td>
<td>3.8⁺±0.36</td>
<td>3.2⁺±0.76</td>
</tr>
</tbody>
</table>
Table (4) Effect of Aracidonic & double dose of Calcium on Renal function of bony massin rats

<table>
<thead>
<tr>
<th>Groups</th>
<th>Creatinine (u/l)</th>
<th>Uric acid (u/l)</th>
<th>Urea (u/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control (G1)</td>
<td>0.8 ±0.00</td>
<td>3.4 ±0.36</td>
<td>35.6 ±8.80</td>
</tr>
<tr>
<td>Positive control (G2) + Calcium</td>
<td>0.7 ±0.06</td>
<td>2.0 ±0.46</td>
<td>23.1 ±2.78</td>
</tr>
<tr>
<td>Aracidonic (1000mg) + Calcium (G3)</td>
<td>0.8 ±0.06</td>
<td>2.2 ±0.26</td>
<td>23.6 ±0.64</td>
</tr>
<tr>
<td>Aracidonic (1150mg) + Calcium (G4)</td>
<td>0.9 ±0.06</td>
<td>2.3 ±0.78</td>
<td>31.3 ±3.38</td>
</tr>
<tr>
<td>Aracidonic (1300mg) + Calcium (G5)</td>
<td>0.9 ±0.06</td>
<td>3.2 ±0.71</td>
<td>29.1 ±5.16</td>
</tr>
<tr>
<td>Aracidonic (1450mg) + Calcium (G6)</td>
<td>0.8 ±0.00</td>
<td>3.6 ±0.42</td>
<td>26.1 ±2.50</td>
</tr>
</tbody>
</table>

Table (5) Effect of Aracidonic and double dose of Calcium on lipid function of bony massin rats

<table>
<thead>
<tr>
<th>Groups</th>
<th>Total Cholesterol</th>
<th>Triglycerides</th>
<th>HDL Cholesterol</th>
<th>LDL Cholesterol</th>
<th>VLDL Cholesterol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control (G1)</td>
<td>54.8 ±6.09</td>
<td>88.6 ±11.43</td>
<td>19.2 ±3.03</td>
<td>17.9 ±6.03</td>
<td>17.7 ±2.29</td>
</tr>
<tr>
<td>Positive control (G2) + Calcium</td>
<td>57.5 ±8.61</td>
<td>111.8 ±59.06</td>
<td>19.3 ±1.03</td>
<td>15.8 ±4.79</td>
<td>22.4 ±11.81</td>
</tr>
<tr>
<td>Aracidonic (1000mg) + Calcium (G3)</td>
<td>57.9 ±4.67</td>
<td>68.0 ±23.01</td>
<td>20.9 ±3.38</td>
<td>23.4 ±6.73</td>
<td>13.6 ±4.60</td>
</tr>
<tr>
<td>Aracidonic (1150mg) + Calcium (G4)</td>
<td>49.2 ±7.79</td>
<td>79.1 ±31.36</td>
<td>18.7 ±4.00</td>
<td>14.6 ±9.78</td>
<td>15.8 ±6.27</td>
</tr>
<tr>
<td>Aracidonic (1300mg) + Calcium (G5)</td>
<td>57.0 ±6.92</td>
<td>59.0 ±15.45</td>
<td>19.9 ±2.05</td>
<td>25.4 ±5.33</td>
<td>11.7 ±3.14</td>
</tr>
<tr>
<td>Aracidonic (1450mg) + Calcium (G6)</td>
<td>53.7 ±9.70</td>
<td>94.7 ±28.29</td>
<td>17.2 ±2.78</td>
<td>17.6 ±11.85</td>
<td>18.9 ±5.66</td>
</tr>
</tbody>
</table>

Histopathological Examination Of Heart:

Microscopically, heart of rat from group 1 revealed the normal histological structure of cardiac myocytes (Figs. 1 and 2). Meanwhile, heart of rats from group 2 showed intermyocardial oedema associated with intermyocardial infiltration with mononuclear inflammatory cells (Figs. 3 and 4). However, heart of rats from group 3 revealed no histopathological alterations except slight intermyocardial oedema in some sections (Figs. 5 and 6). Some sections from group 4 showed intermyocardial infiltration with mononuclear inflammatory cells (Fig. 7), whereas, other sections from this group revealed no histopathological alterations (Fig. 8). Moreover, heart of rats from group 5 exhibited no histopathological alterations (Figs. 9 and 10). Furthermore, the only histopathological change observed in heart of rats from group 6 was slight intermyocardial oedema (Figs. 11 and 12).
Fig. (1): Heart of rat from group 1 showing the normal histological structure of cardiac myocytes (H & E X 400).

Fig. (2): Heart of rat from group 1 showing the normal histological structure of cardiac myocytes (H & E X 400).

Fig. (3): Heart of rat from group 2 showing intermyocardial infiltration with mononuclear inflammatory cells (H & E X 400).

Fig. (4): Heart of rat from group 2 showing intermyocardial infiltration with mononuclear inflammatory cells (H & E X 400).

Fig. (5): Heart of rat from group 3 showing slight intermyocardial oedema (H & E X 400).

Fig. (6): Heart of rat from group 3 showing no histopathological alterations (H & E X 400).

Fig. (7): Heart of rat from group 4 showing intermyocardial infiltration with mononuclear inflammatory cells (H & E X 400).

Fig. (8): Heart of rat from group 4 showing no histopathological alterations (H & E X 400).
Fig. (9): Heart of rat from group 5 showing no histopathological alterations (H & E X 400).

Fig. (10): Heart of rat from group 5 showing no histopathological alterations (H & E X 400).

Fig. (11): Heart of rat from group 6 showing no histopathological alterations (H & E X 400).

Fig. (12): Heart of rat from group 6 showing slight intermyocardial oedema (H & E X 400).

Histopathological examination of kidneys:

Microscopically, kidneys of rats from group 1 revealed the normal histological structure of renal parenchyma (Figs. 1 and 2). On contrary, kidneys of rats from group 2 showed cytoplasmic vacuolization of epithelial lining renal tubules, proteinaceous material in the lumen of renal tubules (Fig. 3) and focal necrosis of renal tubules associated with inflammatory cells infiltration (Fig. 4). However, kidneys of rats from group 3 revealed no histopathological changes (Fig. 5) except proteinaceous material in the lumen of renal tubules (Fig. 6). On the other hand, kidneys of rats from group 4 showed no histopathological changes (Fig. 7) except focal interstitial few inflammatory cells infiltration (Fig. 8) in some sections. Examined sections from group 5 showed cytoplasmic vacuolization of epithelial lining renal tubules, congestion of glomerular tuft (Fig. 9) and focal necrosis of renal tubules associated with calcification (Fig. 10). Meanwhile, kidneys from group 6 revealed no histopathological changes (Figs. 11 and 12).
Fig. (1): kidney of rat from group 1 showing the normal histological structure of renal parenchyma (H & E X 400).

Fig. (2): kidney of rat from group 1 showing the normal histological structure of renal parenchyma (H & E X 400).

Fig. (3): kidney of rat from group 2 showing cytoplasmic vacuolization of epithelial lining renal tubules and proteinaceous material in the lumen of renal tubules (H & E X 400).

Fig. (4): Kidney of rat from group 2 showing focal necrosis of renal tubules associated with inflammatory cells infiltration (H & E X 400).

Fig. (5): kidney of rat from group 3 showing no histopathological changes (H & E X 400).

Fig. (6): kidney of rat from group 3 showing proteinaceous material in the lumen of renal tubules (H & E X 400).

Fig. (7): kidney of rat from group 4 showing no histopathological changes (H & E X 400).

Fig. (8): kidney of rat from group 4 showing focal interstitial few inflammatory cells infiltration (H & E X 400).
Histopathological examination of liver:

Microscopically, liver of rats from group 1 revealed the normal histological structure of hepatic lobules (Fig. 1). On contrary, liver of rats from group 2 hydropic degeneration of hepatocytes (Fig. 3 and 4), focal hepatic necrosis associated with inflammatory cells infiltration (Fig. 3) and portal infiltration with inflammatory cells (Fig. 4). However, liver of rats from group 3 showed slight hydropic degeneration of hepatocytes (Fig. 5) and vacuolar degeneration of some hepatocytes (Fig. 6). Meanwhile, some examined sections from group 4 revealed slight hydropic degeneration of hepatocytes (Fig. 7), whereas, other sections showed focal hepatic necrosis associated with inflammatory cells infiltration (Fig. 8). Furthermore, liver of rats from group 5 revealed slight Kupffer cells activation (Figs. 9 and 10) and portal infiltration with few inflammatory cells (Fig. 10). Moreover, liver of rats from group 6 showed slight hydropic degeneration of some hepatocytes (Fig. 11) and sinusoidal leukocytosis (Fig. 12).
Fig. (1): Liver of rat from group 1 showing the normal histological structure of hepatic lobule (H & E X 400).

Fig. (2): Liver of rat from group 1 showing the normal histological structure of hepatic lobule (H & E X 400).

Fig. (3): Liver of rat from group 2 showing hydropic degeneration of hepatocytes and focal hepatic necrosis associated with inflammatory cells infiltration (H & E X 400).

Fig. (4): Liver of rat from group 2 showing hydropic degeneration of hepatocytes and portal infiltration with inflammatory cells (H & E X 400).

Fig. (5): Liver of rat from group 3 showing slight hydropic degeneration of hepatocytes (H & E X 400).

Fig. (6): Liver of rat from group 3 showing vacuolar degeneration of some hepatocytes (H & E X 400).

Fig. (7): Liver of rat from group 4 showing slight hydropic degeneration of hepatocytes (H & E X 400).

Fig. (8): Liver of rat from group 4 showing focal hepatic necrosis associated with inflammatory cells infiltration (H & E X 400).
Fig. (9): Liver of rat from group 5 showing slight Kupffer cells activation (H & E X 400).

Fig. (10): Liver of rat from group 5 showing slight Kupffer cells activation and portal infiltration with few inflammatory cells (H & E X 400).

Fig. (11): Liver of rat from group 6 showing slight hydropic degeneration of some hepatocytes (H & E X 400).

Fig. (12): Liver of rat from group 6 showing sinusoidal leukocytosis (H & E X 400).
References:

Roberts, MD; Iosia, M; Kerksick, CM; Taylor, LW; Campbell, B; Wilborn, CD; Harvey, T; Cooke, M; Rasmussen, C; Greenwood, Mike; Wilson, Ronald; Jitomir, Jean; Willoughby, Darryn; Kreider, Richard B (2007): "28-Effects of arachidonic acid supplementation on training adaptations in resistance-trained males". Journal of the International Society of Sports Nutrition. 4:21. doi:10.1186/1550-2783-4-21. PMC 2217562. PMID 18045476

Smith, GI; Atherton, P; Reeds, DN; Mohammed, BS; Rankin, D; Rennie, MJ; Mittendorfer, B (2011): "Omega-3 polyunsaturated fatty acids augment the muscle protein anabolic response to hyperinsulinaemia-hyperaminoacidaemia in healthy young and middle-aged men and women " . Clinical Science. 121 (626778. doi:10.1042/cs20100597. PMC 3499967. PMID 21501117.

تأثير حامض الأراكيذوًيك وتكثيف الكالسيوم علي الهيكل العظمي
في حيوانات التجارب

سحر عثمان الشافعى ، خالد على عبذ الرحوي شاهيى، سعاد هاشن هصطفى

الملخص العربي:

العظام من أهم أجزاء جسم الإنسان فقد يؤدي ضعف العظام للضعف العام والإصابة بالامراض فهي دروع لجميع اجهزة الجسم. وهنا تبرز أهمية تناول حامض الأراكيذوًيك حيث حمض الأراكيذوًيك من الأحماض الكربوكسيلية. مع السلسلة 20 واربع روابط مستقلة ويفع أول رابطة مزدوجة في الكربون السادس مع نهائية أوميغا ومن أهم مصادر هالحم والبيض ووظيث حمض الليمونيك ويمكن اخلاصه من فطر مورتاريلا البنيا حامض الأراكيذوًيك هو من الأحماض الدهنية في الدهون الدهنية خاصة فسفاتيديل إيثانولامين من أغشية الخلايا في الجسم ويوجد بوفرة في الدماغ والعضلات والكبد والهيكل العظمي وهو موقع نشط بشكل خاص من الاحتفاظ بحمض الأراكيذوًيك وهو ما يمثل من الالهارات الخلوية كما أنها رسول ثاني في تنظيم اشارات الإندامات

أهمية حامض الأراكيذوًيك في الجسم: نمو العضلات حماية خلايا المن من التلف

الهدف من الدراسة:

- التحقق من تأثير نقص وعلاج حامض الأراكيذوًيك على تركيز وتكثيف الكالسيوم وكثافة العظام

- مقارنة نتائج المجموعات مع المجموعة التي تم نقص حامض الأراكيذوًيك وزيادة تركيز الكالسيوم

- علاقة حامض الأراكيذوًيك باول نقطة بداية المثى للطفل

- علاقة حامض الأراكيذوًيك بالجسم النحيف زيادة كتلة العظام.